Approximate arithmetic structure in large sets of integers
نویسندگان
چکیده
We prove that if a set is ‘large’ in the sense of Erdős, then it approximates arbitrarily long arithmetic progressions strong quantitative sense. More specifically, expressing error approximation terms gap length $\Delta$ progression, we improve previous result $o(\Delta)$ to $O(\Delta^\alpha)$ for any $\alpha \in (0,1)$. This improvement comes from new approach relying on an iterative application Szemerédi's Theorem.
منابع مشابه
Arithmetic of Large Integers
Out[27]= 5 732 633 648 444 029 959 171 112 534 135 601 537 904 527 274 424 900 382 532 001 737 941 474 619 400 523 520 462 230 330 041Ö 125 536 677 017 734 855 696 154 228 338 013 057 234 856 311 747 239 817 067 594 543 153 099 451 342 467 908 368 438 222 191Ö 627 068 172 197 302 715 770 028 566 855 392 342 976 305 724 205 594 772 269 515 365 592 152 841 739 667 322 895 223 024 545Ö 931 314 017...
متن کاملApproximate Polynomial Structure in Additively Large Sets
In [1], the authors introduced a measure space, obtained by taking a quotient of a Loeb measure space, that has the property that multiplication is measure-preserving and for which standard sets of positive logarithmic density have positive measure. The log Banach density of a standard set (see Section 2 below for the definition) was also introduced, and this measure space framework was used, i...
متن کاملOn Arithmetic Progressions in Sums of Sets of Integers
3 Proof of Theorem 1 9 3.1 Estimation of the g1 term. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 Estimation of the g3 term. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3 Estimation of the g2 term. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4 Putting everything together. . . . . . . . . . . . . . . . . . . . . ....
متن کاملOn Arithmetic Structures in Dense Sets of Integers
We prove that if A ⊆ {1, . . . , N } has density at least (log log N )−c, where c is an absolute constant, then A contains a triple (a, a+d, a+2d) with d = x2+ y2 for some integers x, y, not both zero. We combine methods of T. Gowers and A. Sárközy with an application of Selberg’s sieve. The result may be regarded as a step toward establishing a fully quantitative version of the polynomial Szem...
متن کاملArithmetic Structure in Difference Sets
3 Exponential Sum Estimates 3 3.1 Difference Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.2 Fractional Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.3 Weyl’s Inequality and Hua’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.4 Remarks on Exponential Sums . . . . . . . . . . . . . . . . . . . . ....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Real analysis exchange
سال: 2021
ISSN: ['1930-1219', '0147-1937']
DOI: https://doi.org/10.14321/realanalexch.46.1.0163